Integration strategies
Evaluate the following integrals using …
- substitution
- integration by parts
- trigonometric substitution
- partial fractions
Note: You may check your chosen strategy with the instructor before evaluating.
1. \( \displaystyle\int \frac{1}{\sqrt{10 - x^2}} \,dx \)
hint
2. \( \displaystyle\int \frac{1}{x (x-1)^2} \,dx \)
hint 1
hint 2
3. \( \displaystyle\int x^3 \ln x \,dx \)
hint
5. \( \displaystyle\int \frac{x^3}{x^2 - 1} \,dx \)
hint 1
hint 2
hint 3
3. \( \displaystyle\int \dfrac{1}{\sqrt{x} + 1} \,dx \)
hint
alternate
Answers (mixed up)
- \( \frac{x^2}{2} + \frac{1}{2}\ln|x+1| + \frac{1}{2}\ln|x-1| + C \)
- \( 2\sqrt{x} - 2 \ln(\sqrt{x} + 1) + C \)
- \( \sin^{-1} \left(\frac{x}{\sqrt{10}}\right) + C \)
- \( \ln|x| - \ln|x-1| - \dfrac{1}{x-1} + C\)
- \( \dfrac{x^4 \ln x}{4} - \dfrac{x^4}{16} + C \)